Перевод: со всех языков на английский

с английского на все языки

pioneer vehicle

  • 1 инженерная машина

    Универсальный русско-английский словарь > инженерная машина

  • 2 машина разграждения

    Military: (инженерная) obstacle-clearing vehicle, pioneer vehicle

    Универсальный русско-английский словарь > машина разграждения

  • 3 плавающая инженерная машина

    Универсальный русско-английский словарь > плавающая инженерная машина

  • 4 Ford, Henry

    [br]
    b. 30 July 1863 Dearborn, Michigan, USA
    d. 7 April 1947 Dearborn, Michigan, USA
    [br]
    American pioneer motor-car maker and developer of mass-production methods.
    [br]
    He was the son of an Irish immigrant farmer, William Ford, and the oldest son to survive of Mary Litogot; his mother died in 1876 with the birth of her sixth child. He went to the village school, and at the age of 16 he was apprenticed to Flower brothers' machine shop and then at the Drydock \& Engineering Works in Detroit. In 1882 he left to return to the family farm and spent some time working with a 1 1/2 hp steam engine doing odd jobs for the farming community at $3 per day. He was then employed as a demonstrator for Westinghouse steam engines. He met Clara Jane Bryant at New Year 1885 and they were married on 11 April 1888. Their only child, Edsel Bryant Ford, was born on 6 November 1893.
    At that time Henry worked on steam engine repairs for the Edison Illuminating Company, where he became Chief Engineer. He became one of a group working to develop a "horseless carriage" in 1896 and in June completed his first vehicle, a "quadri cycle" with a two-cylinder engine. It was built in a brick shed, which had to be partially demolished to get the carriage out.
    Ford became involved in motor racing, at which he was more successful than he was in starting a car-manufacturing company. Several early ventures failed, until the Ford Motor Company of 1903. By October 1908 they had started with production of the Model T. The first, of which over 15 million were built up to the end of its production in May 1927, came out with bought-out steel stampings and a planetary gearbox, and had a one-piece four-cylinder block with a bolt-on head. This was one of the most successful models built by Ford or any other motor manufacturer in the life of the motor car.
    Interchangeability of components was an important element in Ford's philosophy. Ford was a pioneer in the use of vanadium steel for engine components. He adopted the principles of Frederick Taylor, the pioneer of time-and-motion study, and installed the world's first moving assembly line for the production of magnetos, started in 1913. He installed blast furnaces at the factory to make his own steel, and he also promoted research and the cultivation of the soya bean, from which a plastic was derived.
    In October 1913 he introduced the "Five Dollar Day", almost doubling the normal rate of pay. This was a profit-sharing scheme for his employees and contained an element of a reward for good behaviour. About this time he initiated work on an agricultural tractor, the "Fordson" made by a separate company, the directors of which were Henry and his son Edsel.
    In 1915 he chartered the Oscar II, a "peace ship", and with fifty-five delegates sailed for Europe a week before Christmas, docking at Oslo. Their objective was to appeal to all European Heads of State to stop the war. He had hoped to persuade manufacturers to replace armaments with tractors in their production programmes. In the event, Ford took to his bed in the hotel with a chill, stayed there for five days and then sailed for New York and home. He did, however, continue to finance the peace activists who remained in Europe. Back in America, he stood for election to the US Senate but was defeated. He was probably the father of John Dahlinger, illegitimate son of Evangeline Dahlinger, a stenographer employed by the firm and on whom he lavished gifts of cars, clothes and properties. He became the owner of a weekly newspaper, the Dearborn Independent, which became the medium for the expression of many of his more unorthodox ideas. He was involved in a lawsuit with the Chicago Tribune in 1919, during which he was cross-examined on his knowledge of American history: he is reputed to have said "History is bunk". What he actually said was, "History is bunk as it is taught in schools", a very different comment. The lawyers who thus made a fool of him would have been surprised if they could have foreseen the force and energy that their actions were to release. For years Ford employed a team of specialists to scour America and Europe for furniture, artefacts and relics of all kinds, illustrating various aspects of history. Starting with the Wayside Inn from South Sudbury, Massachusetts, buildings were bought, dismantled and moved, to be reconstructed in Greenfield Village, near Dearborn. The courthouse where Abraham Lincoln had practised law and the Ohio bicycle shop where the Wright brothers built their first primitive aeroplane were added to the farmhouse where the proprietor, Henry Ford, had been born. Replicas were made of Independence Hall, Congress Hall and the old City Hall in Philadelphia, and even a reconstruction of Edison's Menlo Park laboratory was installed. The Henry Ford museum was officially opened on 21 October 1929, on the fiftieth anniversary of Edison's invention of the incandescent bulb, but it continued to be a primary preoccupation of the great American car maker until his death.
    Henry Ford was also responsible for a number of aeronautical developments at the Ford Airport at Dearborn. He introduced the first use of radio to guide a commercial aircraft, the first regular airmail service in the United States. He also manufactured the country's first all-metal multi-engined plane, the Ford Tri-Motor.
    Edsel became President of the Ford Motor Company on his father's resignation from that position on 30 December 1918. Following the end of production in May 1927 of the Model T, the replacement Model A was not in production for another six months. During this period Henry Ford, though officially retired from the presidency of the company, repeatedly interfered and countermanded the orders of his son, ostensibly the man in charge. Edsel, who died of stomach cancer at his home at Grosse Point, Detroit, on 26 May 1943, was the father of Henry Ford II. Henry Ford died at his home, "Fair Lane", four years after his son's death.
    [br]
    Bibliography
    1922, with S.Crowther, My Life and Work, London: Heinemann.
    Further Reading
    R.Lacey, 1986, Ford, the Men and the Machine, London: Heinemann. W.C.Richards, 1948, The Last Billionaire, Henry Ford, New York: Charles Scribner.
    IMcN

    Biographical history of technology > Ford, Henry

  • 5 Olds, Ransom Eli

    [br]
    b. 1864 Geneva, Ohio, USA
    d. 1950 Lansing, Michigan, USA
    [br]
    American pioneer motor manufacturer.
    [br]
    He began his working life in 1885 as a bookkeeper in his father's machine shop in Lansing, Michigan, where he became a partner soon after. Encouraged by his success in making a small steam engine, heated by an ordinary gasoline stove burner, he built a three-wheeled, self-propelled vehicle in 1887. Increasingly interested in the internal combustion engine, he adopted it for a further vehicle which he completed in 1896. The following year he founded the Olds Motor Vehicle Company and, to take the place of the family machine shop, the Olds Gasoline Machine Works. In 1899 the assets of the motorvehicle company were diverted into a new company, the Olds Motor Works, and operations were transferred to Detroit. In 1904 he resigned and founded the Reo M Car Company (an acronym of his initials) and organized several subsidiary companies as suppliers of components. After 1915 he tended to drop out to give more time to other interests such as the Ideal Power Lawn Mower Company, set up to manufacture a mower he had invented, the Capital National Bank and R.E.Olds and Co., an investment company.
    [br]
    Further Reading
    Dictionary of American Biography, 3rd edn, New York: Charles Scribner.
    IMcN

    Biographical history of technology > Olds, Ransom Eli

  • 6 Pullman, George Mortimer

    [br]
    b. 3 March 1831 Brocton, New York, USA
    d. 19 October 1897 Chicago, Illinois, USA
    [br]
    American inventor of the Pullman car.
    [br]
    Pullman was initially a cabinet-maker in Albion, New York, and then became a road-works contractor in Chicago. Observing a need for improved sleeping accommodation on trains, he arranged in 1858 with the Chicago \& Alton Railroad to convert two of their coaches into sleeping cars by incorporating upper berths hinged to the sides of the car. These and a third car entered service in 1859 and were popular with passengers, but other railways were reluctant to adopt them.
    Pullman moved to the Colorado mining area and kept a general store, but in 1863 he returned to Chicago. With Ben Field he spent a year building the car Pioneer, which not only incorporated the folding upper berths but also had seats arranged to convert into lower berths. When Pioneer entered service, the travelling public was enthusiastic: Pullman and Field built more cars, and an increasing number of railways arranged to operate them under contract. In 1867 Pullman and Field organized the Pullman Palace Car Company, which grew to have five car-building plants. Pullman introduced a combined sleeping/restaurant car in 1867 and the dining car in 1868.
    In 1872 James Allport, General Manager of the Midland Railway in Britain, toured the USA and was impressed by Pullman cars. He arranged with Pullman for the American company to ship a series of Pullman cars to Britain in parts for Midland to assemble at its works at Derby. The first, a sleeping car, was completed early in 1874 and entered service on the Midland Railway. Several others followed the same year, including the first Pullman Parlor Car, a luxury coach for day rather than overnight use, to enter service in Europe. Pullman formed the Pullman Palace Car Company (Europe), and although the Midland Railway purchased the Pullman cars running on its system a few years later, Pullman cars were used on many other railways in Britain (notably the London Brighton \& South Coast Railway) and on the continent of Europe. In 1881 the Pullman Parlor Car Globe, running in Britain, became the first vehicle to be illuminated by electric light.
    [br]
    Bibliography
    1864. jointly with Field, US patent no. 42,182 (upper berth).
    1865, jointly with Field, US patent no. 49,992 (the seat convertible into a lower berth).
    Further Reading
    C.Hamilton Ellis, 1965, Railway Carriages in the British Isles, London: George Allen \& Unwin, Ch. 6 (describes the introduction of Pullman cars to Europe).
    PJGR

    Biographical history of technology > Pullman, George Mortimer

  • 7 Siemens, Dr Ernst Werner von

    [br]
    b. 13 December 1816 Lenthe, near Hanover, Germany
    d. 6 December 1892 Berlin, Germany
    [br]
    German pioneer of the dynamo, builder of the first electric railway.
    [br]
    Werner von Siemens was the eldest of a large family and after the early death of his parents took his place at its head. He served in the Prussian artillery, being commissioned in 1839, after which he devoted himself to the study of chemistry and physics. In 1847 Siemens and J.G. Halske formed a company, Telegraphen-Bauanstalt von Siemens und Halske, to manufacture a dial telegraph which they had developed from an earlier instrument produced by Charles Wheatstone. In 1848 Siemens obtained his discharge from the army and he and Halske constructed the first long-distance telegraph line on the European continent, between Berlin and Frankfurt am Main.
    Werner von Siemens's younger brother, William Siemens, had settled in Britain in 1844 and was appointed agent for the Siemens \& Halske company in 1851. Later, an English subsidiary company was formed, known from 1865 as Siemens Brothers. It specialized in manufacturing and laying submarine telegraph cables: the specialist cable-laying ship Faraday, launched for the purpose in 1874, was the prototype of later cable ships and in 1874–5 laid the first cable to run direct from the British Isles to the USA. In charge of Siemens Brothers was another brother, Carl, who had earlier established a telegraph network in Russia.
    In 1866 Werner von Siemens demonstrated the principle of the dynamo in Germany, but it took until 1878 to develop dynamos and electric motors to the point at which they could be produced commercially. The following year, 1879, Werner von Siemens built the first electric railway, and operated it at the Berlin Trades Exhibition. It comprised an oval line, 300 m (985 it) long, with a track gauge of 1 m (3 ft 3 1/2 in.); upon this a small locomotive hauled three small passenger coaches. The locomotive drew current at 150 volts from a third rail between the running rails, through which it was returned. In four months, more than 80,000 passengers were carried. The railway was subsequently demonstrated in Brussels, and in London, in 1881. That same year Siemens built a permanent electric tramway, 1 1/2 miles (2 1/2 km) long, on the outskirts of Berlin. In 1882 in Berlin he tried out a railless electric vehicle which drew electricity from a two-wire overhead line: this was the ancestor of the trolleybus.
    In the British Isles, an Act of Parliament was obtained in 1880 for the Giant's Causeway Railway in Ireland with powers to work it by "animal, mechanical or electrical power"; although Siemens Brothers were electrical engineers to the company, of which William Siemens was a director, delays in construction were to mean that the first railway in the British Isles to operate regular services by electricity was that of Magnus Volk.
    [br]
    Principal Honours and Distinctions
    Honorary doctorate, Berlin University 1860. Ennobled by Kaiser Friedrich III 1880, after which he became known as von Siemens.
    Further Reading
    S.von Weiher, 1972, "The Siemens brothers, pioneers of the electrical age in Europe", Transactions of the Newcomen Society 45 (describes the Siemens's careers). C.E.Lee, 1979, The birth of electric traction', Railway Magazine (May) (describes Werner Siemens's introduction of the electric railway).
    Transactions of the Newcomen Society (1979) 50: 82–3 (describes Siemens's and Halske's early electric telegraph instruments).
    Transactions of the Newcomen Society (1961) 33: 93 (describes the railless electric vehicle).
    PJGR

    Biographical history of technology > Siemens, Dr Ernst Werner von

  • 8 Tsiolkovsky (Ziolkowski), Konstantin Eduardovich

    SUBJECT AREA: Aerospace
    [br]
    b. 17 September 1857 (5 September 1857, Old Style) Izhevskoye, Russia
    d. 19 September 1935 Kaluga, Russia.
    [br]
    Russian pioneer space theorist.
    [br]
    The son of a Polish lumberjack who had settled in Russia, Tsiolkovsky was a largely self-educated schoolteacher who was practically deaf from childhood. In spite of this handicap, he studied the problems of space and spaceflight and arrived at most of the correct theoretical solutions. In 1883 he noted that the gas escaping from a vehicle moving into space would drive the containing vehicle away from it. He wrote a remarkable series of technical articles and papers including, in 1903, a seminal article, "Exploration of Space with Reactive Devices". His aerodynamic experiments did not receive any significant recognition from the Academy of Sciences, and his design for an all-metal dirigible was largely ignored at the 1914 Aeronautics Congress in St Petersburg. However, from the inception of the Soviet Union until his death, Tsiolkovsky continued his research with state support, and on 9 November 1921 he was granted a pension for life by the Council of the People's Commissars. He has rightly been described as the "Grandfather of Spaceflight" and as a fine theoretical engineer who established most of the principles upon which rocket technology is based.
    [br]
    Principal Honours and Distinctions
    Elected to the Socialist Academy (later the Academy of Sciences of the USSR) 1919.
    Further Reading
    T.Osman, 1983, Space History, London: Michael Joseph.
    R.Spangenburg and D.Moser, 1990, Space People, New York: Facts on File.
    IMcN

    Biographical history of technology > Tsiolkovsky (Ziolkowski), Konstantin Eduardovich

  • 9 Zizka, Count Jan

    SUBJECT AREA: Weapons and armour
    [br]
    b. c. 1376
    d. 11 October 1424 Pibyslav, Bohemia (now Czech Republic)
    [br]
    Bohemian soldier and armoured fighting vehicle pioneer.
    [br]
    Brought up in the court of King Wencelas IV of Bohemia, Zizka became a mercenary, fighting for the Poles and losing an eye in the process. In 1410 he returned to Bohemia and became a follower of the religious reformer Jan Hus, who was martyred five years later, although his Hussite movement continued after his death. In 1419 Wencelas died, and his half-brother, Sigismund, an anti-Hussite, attempted to secure the throne. The result was war. Zizka organized a peasant force, the Taborites, who quickly made their mark with their discipline and tactical originality. Not only was Zizka the first to handle his infantry, cavalry and artillery as one, but through the mounting of guns on armoured carts he also pioneered the concept of the armoured fighting vehicle as it is known today. In 1420 he overthrew Sigismund, but lost his remaining eye, and continued to fight against the forces of the Pope and other Hussite bands until his death from plague.
    CM

    Biographical history of technology > Zizka, Count Jan

  • 10 Brown, Samuel

    [br]
    b. unknown
    d. 1849 England
    [br]
    English cooper, inventor of a gas vacuum engine.
    [br]
    Between the years 1823 and 1833, Brown achieved a number of a firsts as a pioneer of internal-combustion engines. In 1824 he built a full-scale working model of a pumping engine; in 1826, a vehicle fitted with a gas vacuum engine ascended Shooters Hill in Kent; and in 1827 he conducted trials of a motor-driven boat on the Thames that were witnessed by Lords of the Admiralty. The principle of Brown's engine had been demonstrated by Cecil in 1820. A burning gas flame was extinguished within a closed cylinder, creating a partial vacuum; atmospheric pressure was then utilized to produce the working stroke. By 1832 a number of Brown's engines in use for pumping water were reported, the most notable being at Croydon Canal. However, high fuel consumption and running costs prevented a wide acceptance of Brown's engines, and a company formed in 1825 was dissolved only two years later. Brown continued alone with his work until his death.
    [br]
    Bibliography
    1823, British patent no. 4,874 (gas vacuum engine).
    1826, British patent no. 5,350 (improved gas vacuum engine).
    1846, British patent no. 11,076, "Improvements in Gas Engines and in Propelling Carriages and Vessels" (no specification was enrolled).
    Further Reading
    Various discussions of Brown's engines can be found in Mechanics Magazine (1824) 2:360, 385; (1825) 3:6; (1825) 4:19, 309; (1826) 5:145; (1826) 6:79; (1827) 7:82–134; (1832) 17:273.
    The Engineer 182:214.
    A.K.Bruce, Samuel Brown and the Gas Engine.
    Dugald Clerk, 1895, The Gas and Oil Engine, 6th edn, London, pp. 2–3.
    KAB

    Biographical history of technology > Brown, Samuel

  • 11 Daimler, Gottlieb

    [br]
    b. 17 March 1834 Schorndorff, near Stuttgart, Germany
    d. 6 March 1900 Cannstatt, near Stuttgart, Germany
    [br]
    German engineer, pioneer automobile maker.
    [br]
    The son of a baker, his youthful interest in technical affairs led to his being apprenticed to a gunsmith with whom he produced his apprenticeship piece: a double-barrelled pistol with a rifled barrel and "nicely chased scrollwork", for which he received high praise. He remained there until 1852 before going to technical school in Stuttgart from 1853 to 1857. He then went to a steam-engineering company in Strasbourg to gain practical experience. He completed his formal education at Stuttgart Polytechnik, and in 1861 he left to tour France and England. There he worked in the engine-shop of Smith, Peacock \& Tanner and then with Roberts \& Co., textile machinery manufacturers of Manchester. He later moved to Coventry to work at Whitworths, and it was in that city that he was later involved with the Daimler Motor Company, who had been granted a licence by his company in Germany. In 1867 he was working at Bruderhaus Engineering Works at Reutlingen and in 1869 went to Maschinenbau Gesellschaft Karlsruhe where he became Manager and later a director. Early in the 1870s, N.A. Otto had reorganized his company into Gasmotorenfabrik Deutz and he appointed Gottlieb Daimler as Factory Manager and Wilhelm Maybach as Chief Designer. Together they developed the Otto engine to its limit, with Otto's co-operation. Daimler and Maybach had met previously when both were working at Bruderhaus. In 1875 Daimler left Deutz, taking Maybach with him to set up a factory in Stuttgart to manufacture light, high-speed internal-combustion engines. Their first patent was granted in 1883. This was for an engine fuelled by petrol and with hot tube ignition which continued to be used until Robert Bosch's low-voltage ignition became available in 1897. Two years later he produced his first vehicle, a motor cycle with outriggers. They showed a motor car at the Paris exhibition in 1889, but French manufacturers were slow to come forward and no French company could be found to undertake manufacture. Eventually Panhard and Levassor established the Daimler engine in France. Daimler Motoren GmbH was started in 1895, but soon after Daimler and Maybach parted, having provided an engine for a boat on the River Neckar in 1887 and that for the Wolfert airship in 1888. Daimler was in sole charge of the company from 1895, but his health began to decline in 1899 and he died in 1900.
    [br]
    Further Reading
    E.Johnson, 1986, The Dawn of Motoring. P.Siebetz, 1942, Gottlieb Daimler.
    IMcN

    Biographical history of technology > Daimler, Gottlieb

  • 12 Dunlop, John Boyd

    SUBJECT AREA: Land transport
    [br]
    b. 5 February 1840 Dreghorn, Ayrshire, Scotland
    d. 23 October 1921 Ballsbridge, Dublin, Ireland
    [br]
    Scottish inventor and pioneer of the pneumatic tyre.
    [br]
    Reared in an agricultural community, Dunlop became a qualified veterinary surgeon and practised successfully in Edinburgh and then in Belfast when he moved there in 1867. In October 1887, Dunlop's 9-year-old son complained of the rough ride he experienced with his tricycle over the cobbled streets of Belfast. Dunlop devised and fitted rubber air tubes, held on to a wooden ring by tacking a linen covering which he fixed around the wheels of the tricycle. A marked improvement in riding quality was noted. After further development, a new tricycle was ordered, with the new airtube wheels. This was so successful that Dunlop applied for a patent on 23 July 1889, granted on 7 December. With tyres made in Edinburgh to his specification, bicycles were manufactured by Edlin \& Co. of Belfast and put on sale complete with pneumatic tyres. The successful performance of a racing bicycle thus equipped inspired an unsuccessful competitor, William Harvey de Cros, who had used a solid-tyred machine, to take an interest in Dunlop's invention. With Dunlop, he refloated a company in Dublin, the Pneumatic Tyre \& Booth's Cycle Agency. Dunlop made over his patents, for the tyre, valves, rims and fixing methods, to Du Cros and took shares in the company. Although he was involved in it for many years, it was Du Cros who steered the company through several struggles to success.
    The pneumatic tyre revolutionized cycling and made possible the success of the motor vehicle, although Dunlop did not profit greatly from his invention. After the sale of the company in 1896, to E.T.Hooley for $3 million, he took no further part in the development of the pneumatic tyre. The company went on to become the great Dunlop Rubber Company.
    [br]
    Further Reading
    J.McClintock, 1923, History of the Pneumatic Tyre, Belfast (written by Dunlop's daughter, who based the book on her father's reminiscences).
    LRD

    Biographical history of technology > Dunlop, John Boyd

  • 13 Gurney, Sir Goldsworthy

    [br]
    b. 14 February 1793 Treator, near Padstow, Cornwall, England
    d. 28 February 1875 Reeds, near Bude, Cornwall, England
    [br]
    English pioneer of steam road transport.
    [br]
    Educated at Truro Grammar School, he then studied under Dr Avery at Wadebridge to become a doctor of medicine. He settled as a surgeon in Wadebridge, spending his leisure time in building an organ and in the study of chemistry and mechanical science. He married Elizabeth Symons in 1814, and in 1820 moved with his wife to London. He delivered a course of lectures at the Surrey Institution on the elements of chemical science, attended by, amongst others, the young Michael Faraday. While there, Gurney made his first invention, the oxyhydrogen blowpipe. For this he received the Gold Medal of the Society of Arts. He experimented with lime and magnesia for the production of an illuminant for lighthouses with some success. He invented a musical instrument of glasses played like a piano.
    In 1823 he started experiments related to steam and locomotion which necessitated taking a partner in to his medical practice, from which he resigned shortly after. His objective was to produce a steam-driven vehicle to run on common roads. His invention of the steam-jet of blast greatly improved the performance of the steam engine. In 1827 he took his steam carriage to Cyfarthfa at the request of Mr Crawshaw, and while there applied his steam-jet to the blast furnaces, greatly improving their performance in the manufacture of iron. Much of the success of George Stephenson's steam engine, the Rocket was due to Gurney's steam blast.
    In July 1829 Gurney made a historic trip with his road locomotive. This was from London to Bath and back, which was accomplished at a speed of 18 mph (29 km/h) and was made at the instigation of the Quartermaster-General of the Army. So successful was the carriage that Sir Charles Dance started to run a regular service with it between Gloucester and Cheltenham. This ran for three months without accident, until Parliament introduced prohibitive taxation on all self-propelled vehicles. A House of Commons committee proposed that these should be abolished as inhibiting progress, but this was not done. Sir Goldsworthy petitioned Parliament on the harm being done to him, but nothing was done and the coming of the railways put the matter beyond consideration. He devoted his time to finding other uses for the steam-jet: it was used for extinguishing fires in coal-mines, some of which had been burning for many years; he developed a stove for the production of gas from oil and other fatty substances, intended for lighthouses; he was responsible for the heating and the lighting of both the old and the new Houses of Parliament. His evidence after a colliery explosion resulted in an Act of Parliament requiring all mines to have two shafts. He was knighted in 1863, the same year that he suffered a stroke which incapacitated him. He retired to his house at Reeds, near Bude, where he was looked after by his daughter, Anna.
    [br]
    Principal Honours and Distinctions
    Knighted 1863. Society of Arts Gold Medal.
    IMcN

    Biographical history of technology > Gurney, Sir Goldsworthy

  • 14 Salomans, Sir David Lionel

    [br]
    b. 1851
    d. 1925
    [br]
    English pioneer of electricity and the automobile in England.
    [br]
    Salomans inherited his baronetcy from his uncle, Sir David Salomans (1797–1873), who had been Member of Parliament for Greenwich and the first Jewish Lord Mayor of London. He was the archetypal amateur engineer and inventor of the Victorian age, indulging in such interests as photography, motoring, electricity, woodworking, polariscopy and astronomy. His house, "Broomhill", near Tun bridge Wells in Kent, was one of the first to be lit by electricity and is said to have been the first to use electricity for cooking. He acted as architect for the building of the stables, the water tower and the 150-seat theatre at his home. In 1874 he was granted a patent for an automatic railway signalling system. He was the founder in 1895 of the first motoring organization in Great Britain, the Self Propelled Traffic Association, forerunner of the Royal Automobile Club (RAC). He was also the organizer of the first motor show to be held in Britain, on 15 October 1895. It is said that, in spite of being the Mayor of Tunbridge Wells, Salomans defied the law and drove without the obligatory pedestrian with a red flag preceding his vehicle; this requirement was removed with the later Light (Road) Locomotives Act, which raised the speed limit to 12 mph (19 km/h).
    [br]
    Further Reading
    Various papers may be consulted from the Sir David Salomans Society. See also Simms, Frederick.
    IMcN

    Biographical history of technology > Salomans, Sir David Lionel

  • 15 Trevithick, Richard

    [br]
    b. 13 April 1771 Illogan, Cornwall, England
    d. 22 April 1833 Dartford, Kent, England
    [br]
    English engineer, pioneer of non-condensing steam-engines; designed and built the first locomotives.
    [br]
    Trevithick's father was a tin-mine manager, and Trevithick himself, after limited formal education, developed his immense engineering talent among local mining machinery and steam-engines and found employment as a mining engineer. Tall, strong and high-spirited, he was the eternal optimist.
    About 1797 it occurred to him that the separate condenser patent of James Watt could be avoided by employing "strong steam", that is steam at pressures substantially greater than atmospheric, to drive steam-engines: after use, steam could be exhausted to the atmosphere and the condenser eliminated. His first winding engine on this principle came into use in 1799, and subsequently such engines were widely used. To produce high-pressure steam, a stronger boiler was needed than the boilers then in use, in which the pressure vessel was mounted upon masonry above the fire: Trevithick designed the cylindrical boiler, with furnace tube within, from which the Cornish and later the Lancashire boilers evolved.
    Simultaneously he realized that high-pressure steam enabled a compact steam-engine/boiler unit to be built: typically, the Trevithick engine comprised a cylindrical boiler with return firetube, and a cylinder recessed into the boiler. No beam intervened between connecting rod and crank. A master patent was taken out.
    Such an engine was well suited to driving vehicles. Trevithick built his first steam-carriage in 1801, but after a few days' use it overturned on a rough Cornish road and was damaged beyond repair by fire. Nevertheless, it had been the first self-propelled vehicle successfully to carry passengers. His second steam-carriage was driven about the streets of London in 1803, even more successfully; however, it aroused no commercial interest. Meanwhile the Coalbrookdale Company had started to build a locomotive incorporating a Trevithick engine for its tramroads, though little is known of the outcome; however, Samuel Homfray's ironworks at Penydarren, South Wales, was already building engines to Trevithick's design, and in 1804 Trevithick built one there as a locomotive for the Penydarren Tramroad. In this, and in the London steam-carriage, exhaust steam was turned up the chimney to draw the fire. On 21 February the locomotive hauled five wagons with 10 tons of iron and seventy men for 9 miles (14 km): it was the first successful railway locomotive.
    Again, there was no commercial interest, although Trevithick now had nearly fifty stationary engines completed or being built to his design under licence. He experimented with one to power a barge on the Severn and used one to power a dredger on the Thames. He became Engineer to a project to drive a tunnel beneath the Thames at Rotherhithe and was only narrowly defeated, by quicksands. Trevithick then set up, in 1808, a circular tramroad track in London and upon it demonstrated to the admission-fee-paying public the locomotive Catch me who can, built to his design by John Hazledine and J.U. Rastrick.
    In 1809, by which date Trevithick had sold all his interest in the steam-engine patent, he and Robert Dickinson, in partnership, obtained a patent for iron tanks to hold liquid cargo in ships, replacing the wooden casks then used, and started to manufacture them. In 1810, however, he was taken seriously ill with typhus for six months and had to return to Cornwall, and early in 1811 the partners were bankrupt; Trevithick was discharged from bankruptcy only in 1814.
    In the meantime he continued as a steam engineer and produced a single-acting steam engine in which the cut-off could be varied to work the engine expansively by way of a three-way cock actuated by a cam. Then, in 1813, Trevithick was approached by a representative of a company set up to drain the rich but flooded silver-mines at Cerro de Pasco, Peru, at an altitude of 14,000 ft (4,300 m). Low-pressure steam engines, dependent largely upon atmospheric pressure, would not work at such an altitude, but Trevithick's high-pressure engines would. Nine engines and much other mining plant were built by Hazledine and Rastrick and despatched to Peru in 1814, and Trevithick himself followed two years later. However, the war of independence was taking place in Peru, then a Spanish colony, and no sooner had Trevithick, after immense difficulties, put everything in order at the mines then rebels arrived and broke up the machinery, for they saw the mines as a source of supply for the Spanish forces. It was only after innumerable further adventures, during which he encountered and was assisted financially by Robert Stephenson, that Trevithick eventually arrived home in Cornwall in 1827, penniless.
    He petitioned Parliament for a grant in recognition of his improvements to steam-engines and boilers, without success. He was as inventive as ever though: he proposed a hydraulic power transmission system; he was consulted over steam engines for land drainage in Holland; and he suggested a 1,000 ft (305 m) high tower of gilded cast iron to commemorate the Reform Act of 1832. While working on steam propulsion of ships in 1833, he caught pneumonia, from which he died.
    [br]
    Bibliography
    Trevithick took out fourteen patents, solely or in partnership, of which the most important are: 1802, Construction of Steam Engines, British patent no. 2,599. 1808, Stowing Ships' Cargoes, British patent no. 3,172.
    Further Reading
    H.W.Dickinson and A.Titley, 1934, Richard Trevithick. The Engineer and the Man, Cambridge; F.Trevithick, 1872, Life of Richard Trevithick, London (these two are the principal biographies).
    E.A.Forward, 1952, "Links in the history of the locomotive", The Engineer (22 February), 226 (considers the case for the Coalbrookdale locomotive of 1802).
    PJGR

    Biographical history of technology > Trevithick, Richard

  • 16 Volk, Magnus

    [br]
    b. 19 October 1851 Brighton, England
    d. 20 May 1937 Brighton, England
    [br]
    English pioneer in the use of electric power; built the first electric railway in the British Isles to operate a regular service.
    [br]
    Volk was the son of a German immigrant clockmaker and continued the business with his mother after his father died in 1869, although when he married in 1879 his profession was described as "electrician". He installed Brighton's first telephone the same year and in 1880 he installed electric lighting in his own house, using a Siemens Brothers dynamo (see Siemens, Dr Ernst Werner von) driven by a Crossley gas engine. This was probably one of the first half-dozen such installations in Britain. Magnus Volk \& Co. became noted electrical manufacturers and contractors, and, inter alia, installed electric light in Brighton Pavilion in place of gas.
    By 1883 Volk had moved house. He had kept the dynamo and gas engine used to light his previous house, and he also had available an electric motor from a cancelled order. After approaching the town clerk of Brighton, he was given permission for a limited period to build and operate a 2 ft (61 cm) gauge electric railway along the foreshore. Using the electrical equipment he already had, Volk built the line, a quarter of a mile (400 m) long, in eight weeks. The car was built by a local coachbuilder, with the motor under the seat; electric current at 50 volts was drawn from one running rail and returned through the other.
    The railway was opened on 4 August 1883. It operated regularly for several months and then, permission to run it having been renewed, it was rebuilt for the 1884 season to 2 ft 9 in. (84 cm) gauge, with improved equipment. Despite storm damage from time to time, Volk's Electric Railway, extended in length, has become an enduring feature of Brighton's sea front. In 1887 Volk made an electric dogcart, and an electric van which he built for the Sultan of Turkey was probably the first motor vehicle built in Britain for export. In 1896 he opened the Brighton \& Rottingdean Seashore Electric Tramroad, with very wide-gauge track laid between the high-and low-tide lines, and a long-legged, multi-wheel car to run upon it, through the water if necessary. This lasted only until 1901, however. Volk subsequently became an early enthusiast for aircraft.
    [br]
    Further Reading
    C.Volk, 1971, Magnus Volk of Brighton, Chichester: Phillimore (his life and career as described by his son).
    C.E.Lee, 1979, "The birth of electric traction", Railway Magazine (May).
    PJGR

    Biographical history of technology > Volk, Magnus

  • 17 Westinghouse, George

    [br]
    b. 6 October 1846 Central Bridge, New York, USA
    d. 12 March 1914 New York, New York, USA
    [br]
    American inventor and entrepreneur, pioneer of air brakes for railways and alternating-current distribution of electricity.
    [br]
    George Westinghouse's father was an ingenious manufacturer of agricultural implements; the son, after a spell in the Union Army during the Civil War, and subsequently in the Navy as an engineer, went to work for his father. He invented a rotary steam engine, which proved impracticable; a rerailing device for railway rolling stock in 1865; and a cast-steel frog for railway points, with longer life than the cast-iron frogs then used, in 1868–9. During the same period Westinghouse, like many other inventors, was considering how best to meet the evident need for a continuous brake for trains, i.e. one by which the driver could apply the brakes on all vehicles in a train simultaneously instead of relying on brakesmen on individual vehicles. By chance he encountered a magazine article about the construction of the Mont Cenis Tunnel, with a description of the pneumatic tools invented for it, and from this it occurred to him that compressed air might be used to operate the brakes along a train.
    The first prototype was ready in 1869 and the Westinghouse Air Brake Company was set up to manufacture it. However, despite impressive demonstration of the brake's powers when it saved the test train from otherwise certain collision with a horse-drawn dray on a level crossing, railways were at first slow to adopt it. Then in 1872 Westinghouse added to it the triple valve, which enabled the train pipe to charge reservoirs beneath each vehicle, from which the compressed air would apply the brakes when pressure in the train pipe was reduced. This meant that the brake was now automatic: if a train became divided, the brakes on both parts would be applied. From then on, more and more American railways adopted the Westinghouse brake and the Railroad Safety Appliance Act of 1893 made air brakes compulsory in the USA. Air brakes were also adopted in most other parts of the world, although only a minority of British railway companies took them up, the remainder, with insular reluctance, preferring the less effective vacuum brake.
    From 1880 Westinghouse was purchasing patents relating to means of interlocking railway signals and points; he combined them with his own inventions to produce a complete signalling system. The first really practical power signalling scheme, installed in the USA by Westinghouse in 1884, was operated pneumatically, but the development of railway signalling required an awareness of the powers of electricity, and it was probably this that first led Westinghouse to become interested in electrical processes and inventions. The Westinghouse Electric Company was formed in 1886: it pioneered the use of electricity distribution systems using high-voltage single-phase alternating current, which it developed from European practice. Initially this was violently opposed by established operators of direct-current distribution systems, but eventually the use of alternating current became widespread.
    [br]
    Principal Honours and Distinctions
    Légion d'honneur. Order of the Crown of Italy. Order of Leopold.
    Bibliography
    Westinghouse took out some 400 patents over forty-eight years.
    Further Reading
    H.G.Prout, 1922, A Life of "George Westinghouse", London (biography inclined towards technicalities).
    F.E.Leupp, 1918, George Westinghouse: His Life and Achievements, Boston (London 1919) (biography inclined towards Westinghouse and his career).
    J.F.Stover, 1961, American Railroads, Chicago: University of Chicago Press, pp. 152–4.
    PJGR

    Biographical history of technology > Westinghouse, George

См. также в других словарях:

  • Pioneer — or The Pioneer may refer to: Arts and publications* The Pioneer (Visalia, California), a sculpture by Solon H. Borglum listed on the U.S. National Register of Historic Places *The Pioneers (Elmwood, Illinois), a sculpture by Lorado Taft *The… …   Wikipedia

  • Pioneer Village (Utah) — Pioneer Village is located inside of the Lagoon Amusement Park in Farmington, Utah. Meant to be a “living museum,” Pioneer Village is intended to make the history of Utah come alive. It was founded in 1938 near Salt Lake City by Horace and Ethel… …   Wikipedia

  • Pioneer P-30 — (also known as Atlas Able 5A, or Pioneer Y) was intended to be a lunar orbiter probe, but the mission failed shortly after launch. The objectives were to place a highly instrumented probe in lunar orbit, to investigate the environment between the …   Wikipedia

  • Pioneer P-31 — (also known as Atlas Able 5B or Pioneer Z) was intended to be a lunar orbiter probe, but the mission failed shortly after launch. The objectives were to place a highly instrumented probe in lunar orbit, to investigate the environment between the… …   Wikipedia

  • Pioneer Rocketplane — Infobox Company company name = Pioneer Rocketplane company company type = Private company slogan = Permitting travel to space, travel in space, and travel through space. foundation = 1996 location = Solvang, California, USA key people = Mitchell… …   Wikipedia

  • Pioneer 4 — Infobox Spacecraft Name = Pioneer 4 Organization = NASA Mission Type = Lunar flyby Satellite Of = Sun Launch = March 3 1959 17:11:00 UTC Launch Vehicle = Juno II NSSDC ID = 1959 013A Mass = 6.1 kg Eccentricity = 0.07109 Inclination = 29.9°… …   Wikipedia

  • Pioneer program — The US Pioneer program of unmanned space missions was designed for planetary exploration. There were a number of such missions in the program, but the most notable were Pioneer 10 and Pioneer 11, which explored the outer planets and left the… …   Wikipedia

  • Pioneer 6, 7, 8, and 9 — Infobox Spacecraft Caption = Artists conception of the Pioneer 6 9 spacecraft Name = Pioneer 6, 7, 8, and 9 Mass = 146, 138, 146, 147 kg Organization = NASA Launch Vehicle = Delta E Launch = 16 December 1965 at 07:31:00 UTC 17 August 1966 at… …   Wikipedia

  • Pioneer Venus project — Infobox Spacecraft Name = Pioneer Venus Orbiter Caption = Pioneer Venus Orbiter Organization = Ames Research Center NASA Major Contractors = Mission Type = Orbiter Satellite Of = Venus Orbital Insertion Date = December 4, 1978 Launch = 20 May,… …   Wikipedia

  • Pioneer 2 — Infobox Spacecraft Caption=NASA photo of the Pioneer 2 probe Name=Pioneer 2 Mission Type=Orbiter Satellite Of=MoonPioneer 2 was the last of the three project Able space probes designed to probe lunar and space. Shortly after launch at 07:30:00… …   Wikipedia

  • Vehicle registration plates of New Jersey — The U.S. state of New Jersey first issued license plates in 1908. Plates are currently issued by the New Jersey Motor Vehicle Commission. All bases of all classes of plates from 1959 to present are still valid for display in New Jersey. Since… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»